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Abstract. Nautilus is a home-based and scope consistency DSM sys-

tem. The cache-only write detection technique consists in maintaining

the pages writable only on the home nodes and only detecting writes

on the cache copies, a less number of page faults and page requests oc-

cur and consequently better speedups can be achieved. In this paper,

the traditional write detection mechanism is compared to the cache-only

write detection technique, when both are applied to Nautilus DSM. Also,

in order to have a fair and homogeneous comparison, TreadMarks DSM

system was included in this study. The benchmarks evaluated in this

study are SOR (from Rice University), LU and Water N-Squared (both

from SPLASH-2).

1 Introduction

The Distributed Shared Memory (DSM) paradigm[8], which has been largely

discussed for the last 9 years, is an abstraction of shared memory which permits

to view a network of workstations[11] as a shared memory parallel computer. By

moving or replicating data[8], shared memory uniform accesses are done by the

di�erent nodes, implementing in this way the DSM main aim. These movements

and/or replications of data, guarantee its consistency, allowing programs done for

physically shared memory machines to be easily ported and developed[1], since

to develop message passing programs is more diÆcult than to develop shared

memory programs.

Some important DSMs like Quarks[1, 7], TreadMarks[3], CVM[10], Midway[9],

JIAJIA[4] and Nautilus[5] are page-based DSM systems. Page-based solutions

have achieved good speedups for several benchmarks, but there is still available

place for improvements.[17]

Munin[2] DSM has proposed the multiple writer protocols technique in order

to minimize the false sharing e�ects. The multiple writer technique allows two

or more processors to write on the same page at di�erent variables. The multiple

writer protocols technique is based on diÆng 1 and twinning techniques[2]. In

order to do the twinning and diÆng, a write detection mechanism is required.

Thus, a write detection is an essential mechanism in multiple-writer proto-

cols to identify writes to shared pages. In order to implement multiple-writer
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1 di�s: codi�cation of the modi�cation su�ered by a page during a critical section



protocol, software DSMs use virtual memory page faults to detect writes to

shared pages. Hu[19] has proposed a cache-only write detection for JIAJIA. In

this scheme, pages are protected at the beginning of an interval to detect writes

in it, and also in home nodes, a write to a shared page is detected and this page

will remain to be written by the home node until it is written by another node.

Thus, in this interval, the page only is written by its home node and no write

detection is necessary, decreasing the number of page faults and the overhead,

thus improving its speedup. In addition, for applications with large shared data

set and good data distribution, if the write-detection would be eliminated from

the home node, a great overhead can be decreased.[16]

The cache-only write detection scheme used in Nautilus[5] is based on the

scheme proposed by Hu[19] for home-based DSMs as JIAJIA[4]. And the main

contribution of this paper is to evaluate the cache-only write detection scheme

for Nautilus and its in
uence on Nautilus's speedup, verifying how this tech-

nique can help to decrease the overheads. TreadMarks[3], a reference of optimal

speedups by the scienti�c community, is included in the comparison in order to

have a reference parameter of speedups. Unhappily, the results from cache-only

write-detection technique applied to TreadMarks DSM will not be showed nor

compared here because the version (1.0.3) used in this study is a demo version,

therefore, the source is not available.

The evaluation comparison for cache-only write-detection is done by applying

three di�erent benchmarks: LU (kernel from SPLASH-2)[15], SOR (from Rice

University) and Water N-Squared (from SPLASH-2). The environment of the

comparison is a 8PC's network interconnected by a fast-Ethernet shared media.

The operating system used in each PC is Linux (2.x).

In section 2 a brief description of Nautilus is done. In section 3, TreadMarks

is described. In section 4, write detection mechanism for Nautilus is detailed.

In section 5, the environment, the applications and the results are presented.

Section 6 concludes this study.

2 Nautilus

The main motivation of the new software DSM Nautilus is to develop a DSM

with a simple consistency memory model, in order to provide good speedups, and

also another one with a simpler user interface, totally compatible with Tread-

Marks and JIAJIA. This idea is very similar with the ideas utilized by JIAJIA,

mentioned in the studies of Hu[4] and Eskicioglu[12], but Nautilus makes use

of some other techniques, which distinguishes it from JIAJIA. These techniques

will be mentioned below.

Nautilus is a page-based DSM, as TreadMarks and JIAJIA. In this scheme,

pages are replicated through the several nodes of the net, allowing multiple

reads and writes[8], thus improving speedups. By adopting the multiple writer

protocols proposed by Carter[2], false sharing is reduced and good speedups can

be achieved.



Nautilus is the �rst multi-threaded DSM system implemented on top of a

free Unix platform that uses the scope consistency model because: 1)there are

versions of TreadMarks implemented with threads, but it does not use scope con-

sistency memory model; 2)JIAJIA is a DSM system based on scope consistency,

but it is not implemented using threads; 3)CVM[10] is a multi-threaded DSM

system, but uses lazy release consistency and up to the moment, it does not have

a Linux based version; 4)Brazos[18] is a multi-threaded DSM and uses scope con-

sistency, but it's implemented in Windows NT platform. The Nautilus's threads

are only used to help to implement rpc services, like barriers, semaphores, page

requests, while in Brazos, besides this services, threads are also used to execute

user programs.

Let's summarize Nautilus features: i) scope consistency only sending consis-

tency messages to the owner of the pages and invalidating pages in the acquire

primitive; ii) multiple writer protocols; iii) multi-threaded DSM: threads to min-

imize the switch context; iv) no use of SIGIO signals(which notice the arrival of

a network message); v) minimization of di�s creation; vi) primitives compatible

with TreadMarks, Quarks and JIAJIA; vii) network of PCs and Linux 2.x; viii)

UDP protocols.

Nautilus follows the lock-based protocol proposed by JIAJIA[12], because of

its simplicity, thus minimizing the overheads. Figure 1 (from [12]) summarizes

the state transitions. Resuming, the home nodes of the pages always contain a

valid page, and the di�s corresponding to the remote cached copies of the pages

are sent to the home nodes. A list with the pages to be invalidated in the node

is attached to the acquire lock message.

RW

INV

RO

wt (twin)

rel (wtnt, diff), acq

wt (getp, twin)

acqinv acqinv

rd (getp)

acq, rel

rd, acq, relrd, wt

initial state

Notes

acqinv:      invalidate the page on acquire
getp:         get the page from its home
wtnt:        send write-notices to the lock
diffs:        send page diffs to home(s)
twin:        create a twin of the page

rd, wt:       read, write
acq, rel:    acquire, release

�gure 1: JIAJIA Coherence Protocol [12]

In Nautilus, the owner nodes of the pages do not need to send the di�s to

other nodes, according to the scope consistency model. So, di�s of pages written

by the owner are not created, which is more eÆcient than the lazy di� creation of

TreadMarks. The implementation of the state diagram of �gure 1 is done in Unix

with the mprotect() primitive, where pages can be in RO, INV or RW states,

thus their states can be changed easily. As JIAJIA[4] does, Nautilus distributes



its shared pages across all nodes and each shared pages has a home node. When

home nodes access their home pages, no page faults occurs. When remote pages

are accessed, page faults occur, and these pages are fetched from their home

node and cached locally. Instead of JIAJIA, Nautilus does not have a replacing

mechanism of cached pages, since in Linux, they are replaced as memory size

increases.

Nautilus uses the scope consistency memory model[14], where the coherence

of cached pages is maintained through write-notices2 kept on the lock (lock-

based). As a result from the multiple-writer protocols technique application, di�s

are sent to their home nodes. Brie
y describing the acquire/release mechanism

of Nautilus, in order to signal the end of the critical section, a release message

is sent to the manager. Taking in advantage the fact of sending this message,

the write notices are piggy-backed on the release message. On the acquire, the

processor which is doing it sends a lock request to the manager. When granting

the lock, the manager piggy-backs write-notices associated with this lock on the

grant message. At the acquire, the processor, which is doing it, invalidates all

cached pages that are noti�ed as obsolete by the received write-notices. On a

barrier, all write notices of all locks are cleared.

3 TreadMarks

The consistency model used by TreadMarks is the lazy release consistency[3],

so the propagation of the modi�cations which occurred during a critical section

are delayed until the next acquire. By using multiple writer protocols and the

lazy release consistency model, the speedups of TreadMarks are very known,

becoming it one of the most used DSM systems.

The speedups of TreadMarks made it the main DSM used by the scienti�c

community as a reference of optimal speedups. Thus, it makes sense to compare

it with other DSMs in order to have an accurate evaluation of their performance.

The eÆciency of TreadMarks is mainly derived from its lazy release consistency

model. The major drawback of adopting this model is the high need of memory

to store the di�s all over the user's application execution. Thus, the size of the

benchmarks used to evaluate the speedups of the DSM system can be compro-

mised if there is not enough memory to execute the program or if the operating

system does swap. If it cannot use enough size to run the benchmarks, the re-

lation computation versus synchronization becomes unfavorable to use a DSM

system.

Let's summarize TreadMarks features: i) lazy release consistency and its vari-

ations [3], minimizing the number of consistency messages through the net; ii)

multiple writer techniques of Munin [1]; iii) primitives compatible with m4; iv)

IBM SP2, Sun Sparc, PCs; v) AIX, Solaris, free Unix (Linux 2.x); vi) UDP pro-

tocols to minimize network protocols overhead; vii) �rst DSM to have a speedup

compatible to a shared memory machine[3].

2 write-notices: indication of which pages were modi�ed during the critical section



4 Cache-Only Write Detection

Munin[2] DSM has proposed the multiple writer protocols technique in order to

minimize the false sharing e�ects. The multiple writer technique allows two or

more processors to write on the same page at di�erent variables. The multiple

writer protocols technique is based on diÆng and twinning techniques[2]. The

diÆng consists in codify the modi�cations su�ered in a critical section. In order

to do twinning, a write detection mechanism is needed to produce the twin of

the page. Second generation page-based DSMs basically use a pair SIGSEGV

signal/handler to detect the write on a page and a pair malloc() and bcopy() to

create the twin. As it can be seen, a signal and several system calls are necessary

to produce it.

As other DSMs like TreadMarks[3] and JIAJIA[4] do, Nautilus uses virtual

memory page faults to detect writes to shared pages. Shared pages are protected

at the beginning of an interval (several critical sections). When the �rst write

to a shared page occurs, a SIGSEGV signal is delivered, and in this moment

the page can be written without protection. At the end of the critical section,

Nautilus sends the write-notices related about the shared pages.

Several studies [3, 4, 17, 19, 20] show that the detection of writes to shared

pages presents signi�cant overheads. Other studies show that applications with

large shared data set and good data distribution, the writes hit in the home. The

study of Amza[16] showed that in many applications, single-writer constitutes

the dominant part of the sharing behavior and shared pages are normally written

by the home node (owner) for a certain interval. Thus, it is possible to conclude

that for applications with large shared data set and good data distribution, if

the write-detection would be eliminated from the home node, a great overhead

can be decreased. And going further, it is not necessary to become the page

from the read-write state to read-only state[19, 20] (as it can be seen in �gure

1) if only the home node writes to this page. Also, only in cache copies (remote

nodes), writes are detected and, when this occur, the pages go from read-write

to read-only state. Concluding, if the home page is written in some interval,

several mprotect() and SIGSEGV handlers calls are saved, improving the DSM's

speedup. If the home page is not written by its home in the interval, some

unnecessary invalidations of remote cached pages can occur, thus more remote

accesses.

Taking into account the single-writer behavior presented in several applica-

tions, Nautilus implements its cache-only write detection scheme which recog-

nizes automatically a single write to a shared page by its home node, presuming

that the page will continue to be written by its home node, until it will be written

by remote nodes.

5 Experimental Platform, Applications and Result

Analysis

The results reported here are collected on a 8 PC's network. Each node (PC) is

equipped with a K6 - 233 MHz (AMD)processor, 64 MB of memory and a fast



Ethernet card (100 Mbits/s) . The nodes are interconnected with a hub. In order

to measure the speedups, the network above was completely isolated from any

other external networks. Each PC runs Linux Red Hat 6.0. The experiments are

executed with no other user process.

The test suite includes three programs: LU (from SPLASH-2[15]), SOR (from

Rice University) and Water N-Squared (from SPLASH-2).

The LU kernel from SPLASH-2 factors a dense matrix into the product of a

lower triangular and an upper triangular matrix. The NxN matrix is divided into

an nxn array of bxb blocks (N = n*b) to exploit temporal locality on sub-matrix

elements. The matrix is factored as an array of blocks, allowing blocks to be

allocated contiguously and entirely in the local memory of processors that own

then[4].

Water is an N-body molecular simulation program that evaluates forces and

potentials in a system of water molecules in the liquid state using a brute force

method with a cuto� radius. Water simulates the state of the molecules in steps.

Both intra- and inter-molecular potentials are computed in each step. The most

computation- and communication-intensive part of the program is the inter-

molecular force computation phase, where each processor computes and updates

the forces between each of its molecules and each of the n/2 following molecules

in a wrap-around fashion[12].

SOR from Rice University solves partial di�erential equations (Laplace e-

quations) with a Over-Relaxation method[4]. There are two arrays, a black and

red one allocated in shared memory. Each element from red array is computed

as an aritmethic mean from black array and each element from black array is

computed as an aritmethic mean from red array. Communication occurs across

the boundary rows on a barrier.

Before presenting the results and their analysis, it is necessary to emphasize

that the execution time for number of nodes=1 in all evaluated benchmarks

is obtained from the sequential version of the benchmarks without any DSM

primitive. So, the primitive used to allocate memory to obtain the sequential

time (number of nodes=1) is malloc(), default primitive of C programming. In

order to have an accurate, homogeneous and fair comparison, the same programs

are executed TreadMarks(version 1.0.3 demo) and Nautilus (version 0.0.1).

The data input size N used in the LU and SOR evaluation is 1792x1792;

the number of iterations for the SOR benchmark is 10 . The number of steps

used in Water is 25 and the number of molecules is 1728.

Table 1 shows some features and results of the benchmarks: sequential time

(t(1)), 8-processor parallel run time(8), speedup (Sp), remote get page request

counts (gp) and number of local SIGSEGV of Nautilus(SG). The sequential time

t(1) was obtained from the sequential program without no DSM primitives and

malloc() primitive. In order to evaluate the cache-only write detection speedup,

remote get page request counts and the number of local SIGSEGVs of Nautilus

are taken. For table 1, Tmk means TreadMarks, NautV means Nautilus with

the traditional virtual memory write detection and NautCO means Nautilus

with the cache-only write detection. NautCO assumes that a page will only be



written by its home in the future barrier interval, keeping its home page writable

if only the home writes to it.

There are some constraints with TreadMarks version (1.0.3) used:

i) the applications were executed and the speedups measured using Nautilus

running on up to 8 nodes;

ii)bigger input sizes: the shared memory size is limited in this version;

iii)the source of this demo version is not available, thus it was neither possible

to evaluate TreadMarks with other page size nor to measure the parameters gp

(get page request) and SG (local SIGSEGV).

application LU Water SOR

t(1) 350.90 2983.00 29.10

t(8).Tmk 55.45 403.20 8.66

t(8).NautV 54.32 426.40 7.66

t(8).NautCO 49.60 422.07 4.37

Sp.Tmk 6.33 7.40 3.36

Sp.NautV 6.46 7.00 3.80

Sp.NautCO 7.07 7.07 6.66

SG.NautV 7980 10210 12425

SG.NautCO 440 824 927

gp.NautV 1528 505 118

gp.NautCO 340 448 74

table 1: comparing TreadMarks and Nautilus (traditional and cache-only)

Three general conclusions can be taken from table 1: the number of SIGSEGVs

and the number of page requests decreased when the cache-only write detection

is applied; also the speedups increases with cache-only write detection applied.

It can be seen lower remote page accesses (gp rows) in NautCO than in NautV,

because of the correct home page write assumption. It was said before that if

a home page is assumed to be written by its home next barrier interval and if

the home does not write it, the assumption causes unnecessary invalidation of

remote cached pages and consequently some other page requests. This justi�es

the decreasing of the number of SIGSEGVs and page requests.

Now, for each benchmark, the behavior of the cache-only technique is ana-

lyzed.

5.1 LU

By looking at �gure 2, the speedups of LU can be seen. It can be noticed from

this �gure that the cache-only write detection technique improved Nautilus's

speedup. Analyzing the cache-only write detection technique in LU, matrices are

distributed across processors in a way that each processor writes to its home part

of the matrices in the computing.[19, 20] Since the computation of an iteration

is synchronized with barriers and passing a barrier causes all shared pages to

be write-protected in traditional virtual memory, page faults occur for writing

all home pages in an iteration. The cache-only method does not write protect

shared pages on a barrier, and writing to home pages of a processor can process

without any SIGSEGV.



From table 1, for eight nodes, it can be noticed that for Nautilus, the cache-

only write method improved the speedup up to 9.44% The increasement of the

speedups can be justi�ed by observing, from table 1, the reduction of the number

of SIGSEGVS and the number of page requests both by an order of magni�cence

lower, when comparing NautCO to NautV.
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�gures 2,3 and 4: speedups of LU (N=1792), Water (1728 molecules and 25

steps) and SOR (1792x1792)

Comparing with TreadMarks, for eight nodes, NautV outperforms it by 2.05%

and NautCO outperforms it by 11.69%. Also, an adequate choice of the page

owners (data distribution) of Nautilus improves data locality and gives a lower

cold start up time to distribute shared data. In addition, the elimination of

SIGIO signals minimizes the overheads of Nautilus.

5.2 Water

By looking at �gure 3, the speedups of Water can be seen. It can be noticed from

this �gure that the cache-only write detection technique improved Nautilus's

speedup.

From table 1, for eight nodes, it can be noticed that NautCO is up to 1.00%

faster than NautV . This behavior can be justi�ed by observing the number

of SIGSEGVS and the number of page requests both from table 1, where the

NautCO version has an order of magni�cence lower SIGSEGVs than NautV and

a also 11.28% lower number of page requests.

Confronting TreadMarks with NautV and NautCO, for eight nodes, Tread-

Marks is up to 5.71% faster than NautV and up to 4.67% faster than NautCO.

This behavior can be justi�ed because of the high synchronization, which is the

dominant feature of Water and because of the Nautilus's semaphore implemen-

tation.



5.3 SOR

By looking at �gure 4, the speedups of SOR can be observed. Also from the

speedup's curves, the cache-only write detection technique improved Nautilus's

speedup.

In SOR, as the same way in LU, matrices are distributed across processors in

a way that each processor writes to its home part of the matrices in the comput-

ing.[19, 20] Since the computation of an iteration is synchronized with barriers

and passing a barrier causes all shared pages to be write-protected in traditional

virtual memory, page faults occur for writing all home pages in an iteration. The

cache-only method does not write protect shared pages on a barrier, and writ-

ing to home pages of a process without any SIGSEGV. From table 1, for eight

nodes, it can be noticed that for NautV, the cache-only write method improved

the speedup up to 75.26%. The increasement of the speedups can be justi�ed

by observing the number of SIGSEGVS from table 1, an order of magni�cence

lower for the NautCO version compared to NautV. The number of page requests

were reduced too.

When compared to TreadMarks, NautV outperforms it up to 13.10% and

NautCO outperforms it up to 98.21%, the last an excellent speedup. The better

choice of the page owners, the multi-threading and the elimination of SIGIO

signals also help to improve Nautilus's speedup.

6 Conclusion

The contribution of this study is an evaluation of the in
uence of the cache-only

write detection mechanism on the speedup of Nautilus DSM. Also, the speedups

of TreadMarks and Nautilus DSMs were compared with three di�erent programs.

This study shows that the cache-only write detection improved Nautilus's

speedup up to 9.44% for LU application, and 75.26% for SOR benchmark, which

showed that these benchmarks had shared data and single-writer behavior. For

Water, the cache-only does not contribute meaningfully to increase the speedup.

Other important conclusion is the reduction of one order of magni�cence of

number of SIGSEGVs and the number of request page faults when the studied

technique was applied.

In future works, other benchmarks will be evaluated in this comparison.

Also, a complete version of TreadMarks will be evaluated, in order to compare

the cache-only write detection of this DSM with Nautilus.
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