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Abstract The Asynchronous Polycyclic Architecture (APA) is a new processor design
for numerically intensive applications. APA resembles the VLIW architecture, in that it provides
independent control and concurrent operation of low-level functional units within the processor. The
main innovations of APA are the provision for multiple threads of control within each processor, the
clustering of functional units into groups of functional units that show very weak coupling with each
other, decoupled access/execute and eager execution. A supercomputer implementing this architecture
is currently being designed, using commercially available parts. 

1 — Introduction and motivation

Development of the Asynchronous Polycyclic Architecture (APA)
concept was spurred by the needs of Project Omicron, an academic research effort.
The project’s main goal (expected to be achieved sometime in 1994) is to design and
build a supercomputer for numerical applications, with a real-world performance in
the same range of the then current supercomputers. APA processors are expected
to provide better sustained performance in real-world problems than standard
vector processors with the same peak capacity.

Since the constraints of a typical University research budget excluded
expensive solutions like custom ECL circuits or exotic packaging and cooling, we
were forced to develop a novel architecture that is better matched to the needs of
real-world computations than the standard vector processor design, but is still
realizable by using commercially available components.

We began our design effort with a critical evaluation of existing archi-
tectures. Current vector processors are machines architecturally designed in the
early seventies. Since then much effort has been put in research in computer archi-
tectures, and many important results had been achieved, but had no influence on
supercomputer architectures. A basic assumption was that there should be ways to
use these results in high-performance machines, if there is no need of compatibility
with older architectures.  
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 Such an evaluation required a performance yardstick. Given our
emphasis on sustained speed in real-world problems, we decided to compare the
alternatives by their average performance on some representative benchmark, rat-
her than by their theoretical peak performance under ideal conditions. As pointed
out in [8], peak performance adds only to the price of a machine.

Since numerical algorithms typically spend most of their time in the
innermost loops, we chose a standard collection of simple loops, the Lawrence
Livermore Kernels (LLK) [9] as our benchmark. The performance of many super-
computers in these loops is well known, and the loops are simple enough to be
compiled and simulated by hand for all the alternative designs that we had to
consider. It is instructive to consider that the real speed observed is a very small
fraction of the maximum speed.

This evidence strongly suggests that the traditional vector processor
architecture is somewhat ill-adapted to the very tasks for which it was designed. The
explanation for this paradox is quite simple: the vector architecture was designed
with individual operations in mind, while the real problem is to process entire inner
loops, not individual operations. Loops contain recurrences and conditionals, situa-
tions that are not considered in the design of vector architectures. 

In vector architectures, the main source of inefficiency is the lack or
inadequacy of support for operation involving recurrences or conditionals. Follo-
wing up on the RISC analogy, it seems reasonable to assume that, by breaking up the
special instructions of standard vector processors into simpler ones, one would
obtain substantially better overall performance from the same amount of hardware.
What is needed is an architecture that can offer reasonable performance on general
loops, containing recurrences and conditional tests, instead of one that concentrates
on optimizing only a few restricted vector forms.

Our proposed Asynchronous Polycyclic Architecture implements this
principle by combining the basics of the VLIW architecture [6] with the decoupled
access/execute concept [13], and with extensions for loop execution, for conditional
execution of instructions, for fetching large amounts of data and for an autonomous
operation of groups of functional units, and eager execution for hiding memory
latency (in eager execution, a instruction is executed as soon as their operands are
available and there is a free unit to do the operation, even when it is not sure if the
control flow will warrant the need for the instruction; in lazy execution an instruction
is executed only when reached by the control flow).

Sections 2 and 3 describe the generic APA concept in more detail, and
provide arguments in support of these claims. Section 4 briefly outlines an intercon-
nect network specially designed for connecting the above processing units to the
memory subsystem. Section 5 describes one specific instance of the architecture, the
preliminary design of the Omicron supercomputer. Section 6 offers some conclu-
ding remarks

2 — Description of the APA

The Asynchronous Polycyclic Architecture resulted from a critical
analysis of the characteristics of the VLIW architecture. The detailed evolution
leading to the APA can be found in [2]; it will be only summarized here.

A VLIW processor  [6] is conceptually characterized by a single
thread of execution, a large number of data paths and functional units, with control



planned at compile time, instructions providing enough bits to control the action of
every functional unit directly and independently in each cycle, operations that
require a small and predictable number of cycles to execute, and each operation can
be pipelined, i. e., each functional unit can initiate a new operation in each cycle.

On examining the conceptual characterization, it becomes clear that
the rationale is to have a large degree of parallelism and a simple, and therefore fast,
control cycle. Closer scrutiny of the conditions above shows that they are sufficient
for the goal, but most are not necessary, at least in the length stated.

The evolution took place in 4 steps:

First, the access/execute concept [13] was introduced. The motivation
was practical considerations on memory access. 

The ideal memory subsystem for any supercomputer should have large
capacity, very low access times, and very high bandwidth, at a low cost. Real
memories must compromise some of these goals. If a large capacity is required, cost
and size limitations almost force the usage of relatively slow dynamic memories.
Besides, numerically intensive applications require a very high memory bandwidth.

General purpose architectures rely almost invariably on caches to
speed up execution, exploiting the locality of memory references. Although this is
the case with general computing loads, this assumption can be wildly wrong with
numerically intensive programs, since dealing with large arrays is incompatible with
any realistically sized cache. This conclusion is reported for quite different machines
[1, 5, 12].

The way to go is to have extensive interleaving in the memory; the
latency may be high, but as long as it is possible to maintain a large number of
outstanding requests, it will be possible to obtain operands at the necessary rate. 

It is therefore unfeasible to have a predictable access time for the
functional units in charge of memory accesses, due to the static unpredictability of
memory bank conflicts. This can be circumvented by considering that the processor
remains synchronous in virtual time, stalling if data is not available when expected,
but this may have a substantially adverse effect on performance.

The first new APA feature solves the memory access problem by
decoupling the process of memory access. Two kinds of functional units are used:
the first, called the address unit, generates and sends the required addresses to the
memory subsystem; the second, called the data reference unit, is responsible for
reordering data words coming from memory and upon request sending them to the
other functional units. This is an asynchronous counterpart to the decoupled ac-
cess/execution concept introduced by [13].

Address units may operate in two modes: single address and multiple
address. In the single address mode, its role is only to receive an address calculated
by an arithmetic unit and to send it to the memory subsystem; in the multiple address
mode, its role is to autonomously generate the values of a set of arithmetic progres-
sions, until a specified number of elements are generated; this mode is used for
reference to (a set of) arrays. Once started, the address unit can proceed asynchro-
nously with the main flow of control: it generates as many addresses as the memory
subsystem can accept, waits if the memory subsystem cannot accept new requests,
resumes execution when this condition is withdrawn and stops when all addresses
have been generated.



As a consequence, the memory subsystem operates at full capacity and
the main flow of control is not disturbed by saturation of the memory subsystem. As
for hardware, fewer bits are required in the instruction, since the units are control-
led by their own instructions, and also fewer ports are required in the central register
file, since the address processors can use a local copy of the required registers.

The second step was extending this concept of asynchronous opera-
tions to the other functional units, each with its own flow of control. 

Experience in programing such a machine shows that it is unduly
complicated. Very few situations require this full splitting of the functional units. A
hierarchical system is adequate for almost all situations: the functional units can be
divided into groups, composed of a certain number of arithmetic units, each capable
of forking the operation of address units.

The third step resulted from the fact that experience in programming
also shows that the communication between groups is infrequent. An important
consequence is that there is no need to share a central register file among groups;
each group can use its own, provided it is able to send values to the other groups.
This communication is done by a private bus connecting the functional units toget-
her.

Three additional features are required for an efficient usage of above
characteristics: eager execution, delayed interrupts and a tagged memory system. To
keep the functional units busy, values should be calculated as soon as possible,
regardless of the possibility of the control flow rendering them unnecessary. A
consequence is that abnormal conditions (like division by zero, references to invalid
addresses, etc) can arise.

To postpone the resulting interrupts, every word is composed of a tag
and a value fields, both in the central register file and in memory. When an operation
encounters an error condition, a number associated with this error condition is
placed in the tag, and the address of the offending instruction is placed in the value
field of the result word. All operations performed with a word containing a non-zero
tag will have the original word as its result, thus preserving the error nature and the
address of the offending instruction. If both operands have non-zero tags, one is
arbitrarily chosen for the result.

Real interrupts occurs only when the word’s value is effectively used.
A value is effectively used when the computation can not proceed without the use of
value. This may be a somewhat elusive concept, and a precise characterization is
beyond the scope of this paper. In a simple approach, a value is effectively used
when used as a final result, in output operations; in a more restrictive context, when
used in an unavoidable operation, as determined by the execution flow graph.

The hardware must have special instructions that generate an inter-
rupt when a value is effectively used. It is up for the compilers do determine when
this is the case.

Efficient execution of loops is obtained by use of a variant of polycyclic
support; since its basics are described elsewhere [4, 12], it will not be described in
detail here. The main difference from the implementation used in the Cydra 5,
described in the above references, is that there are no explicit predicates; predicates
are implied in the "age" of the iteration. This allows the hardware to support
automatic prolog and epilog generation. The hardware also supports predicate-con-
trolled execution of instructions.



Figure 1 - Evolution from VLIW to APA architecture

In this drawing, dotted lines represent flow of control, AL stands for
Arithmetic Logic Unit, and AU for Address unit.

In A, the traditional VLIW architecture. In B, evolution to the ac-
cess/execute architecture. In C, the introduction of groups. Experimental analysis of
programs for this architecture shows that each autonomous set may have its own
copy of the register file, as shown in D. Data is exchanged via an internal bus. Other
essential features for making this possible are not shown. 



The result of these characteristics is a processor with higher perfor-
mance as compared to an equivalent VLIW, implemented with register files with
fewer ports, and with dynamic instruction word size: each group is small, and at any
moment only the active ones must fetch instructions. For instance, the machine
resulting from the dimensioning studied in the next section uses register files with
only two write ports, and instructions of only 80 bits. Figure 1 depicts the evolution
from the VLIW to the APA architecture.

In short, the architecture of one APA group is characterized by:

1 - a large number of data paths and functional units, with control
planned at compile time;

2 - functional units which are divided into groups; each group has its
own register file and its own flow of control;

3 - instructions providing enough bits to control the action of every
functional unit directly and independently in each cycle;

4 - operations that require a small and predictable number (in virtual
time) of cycles to execute;

5 - each operation can be pipelined, i. e., each functional unit can initiate
a new operation in each cycle.

6 - memory accesses are decoupled;

7 - hardware support for loop execution;

8 - eager executions and delayed interrupts.

An APA processor is composed of a set of groups sharing a common
memory. 

3 — Exploitation of parallelism

As defined above, a group is a unit of execution. It can be considered
as a dual of the pipe in vector machines. In the same way a vector processor can have
several pipes, an APA processor may have several groups.

These several groups share a common view of memory, and must be
interconnected to a common memory subsystem. Here again, the problem is not one
of latency, but one of bandwidth. Section 4 describes a interconnection network,
called the Omicron Network, specially designed for this application.

With a processor having several groups, fine-grain parallelism is ex-
ploited within groups; medium-grain parallelism, if present in loops, is exploited
within a processor. Coarse-grain parallelism can be exploited by several processors;
in this regard, the APA is not different from other architectures.

Exploitation of the medium-grain parallelism, which is a distinctive
characteristic of the APA, is done in blocks contained in innermost loops. We call
inner block all the code contained inside an inner loop; it is not necessarily a basic
block, since it may contain conditionals; however, if it contains procedure calls, the
inner loop condition allows only the call of procedures that do not contain loops.

The following considerations are based on simple compiler technolo-
gy; the use of program transformations and other techniques already developed for
vector machines will lead to considerable increase in performance.



Every inner block can be characterized in one of the following catego-
ries:

3.1– Blocks without data or control dependencies
These blocks can be divided among a sufficient number of groups to

allow the use of all bandwidth to memory and all functional units. This category also
includes a few particular cases of easily resolved cases of data dependency, like the
sum of products.

As an example, the loop 

DO 1 I = 1, N

1 S = S + A(I) * B(I)

can be split to 
DO 1 I = 1, N, 2 DO 1 I = 2, N, 2

1 S = S + A(I)*B(I) 1 S = S + A(I)*B(I)

each executed in a different group, followed by the addition of the
values of S. 

It should be noted that since each group has its own set of registers,
there is no renaming problem with S and I; each value will be kept in a register with
the same number, but on a different register file.

3.2– Blocks with control dependencies
Blocks with control dependencies have their performance limited by

latency of the instructions that establish conditions and by the branch instructions.
This can be improved in two ways. To a limited extent, it can be circumvented by the
predicated-controlled execution. A more general solution is to divide the loop
among a sufficiently large number of groups, each processing a fraction of the
iterations.

3.3– Blocks with data dependencies
It is generally difficult or impossible to parallelize blocks with data

dependencies in a straightforward manner. If the data dependency is immediate and
the block is short, a technique that might be used is to increase the data dependency
length and execute the resulting blocks on several groups. This technique is general-
ly limited to an expansion from a dependency of one to two dependencies of two.

As an example, the following loop 

DO 11 K = 2, N

11 X(K) = X(K-1) + Y(K)



can be split to 

X(2) = X(1) + Y(1)

DO 11 K = 3, N, 2 DO 11 K = 4, N, 2

11 X(K)=X(K-2)+Y(K-1)+Y(K) 11 X(K)=X(K-2)+Y(K-1)+Y(K)

The net result is that the APA not only allows the "vectorization" of a
larger class of loops then the traditional vector architecture, but allows the paralleli-
zation of a large class of loops.

4 — The Omicron Interconnect Network

A detailed description and evaluation results of the omicron intercon-
nect network is beyond the scope of this paper; the following presentation intends to
give a few general ideas to clarify the configuration of an APA processor.

To be used in the manner discussed above, independent groups must
have a common view of memory. They will be able to operate efficiently only if there
is an efficient way to interconnect memory modules (eventually composed of a fairly
large number of memory sub-modules) to the groups.

Figure 2 - An 8 x 8 omicron network

G are groups, M are memory modules and C are Omicron switches.
Requests from the groups are routed to the memory modules or to the adjoining
switches, depending on the address requested.



Fortunately, this problem is alleviated by the fact that, due to memory
access decoupling, the performance is sensitive to memory bandwidth and not to the
access time. This allows the design of a specific interconnect network, called the
Omicron network. This network is composed of switches, connected to the groups,
to the memory modules and to the adjoining switches. Fig. 2 shows an omicron
network, interconnecting 8 groups to 4 dual-ported memory modules.

Each omicron switch is composed of switches that can route a request
originated from a group to the adjoining memory module or to neighboring switches,
and, in the case of read requests, route back the datum. The innovation is to use a
queue in the inputs, to hold requests until there is a free path to the next destination
of the request, until the final destination is reached. Although this may add consid-
erably to latency, the obtainable bandwidth is very high, except when the demand
rate approaches unity (one request per group per cycle).

The above consideration holds for Omicron networks of up to 8 swit-
ches per ring per memory port. Systems with more elements can be constructed by
serial connection of switches. An important result is that the first level reduces the
request rate to the effective capacity of the switches, and hence subsequent levels do
not affect the bandwidth to a significant degree.

5 — Dimensioning an APA processor

This section describes one specific instance of the architecture, the
preliminary design of Project Omicron supercomputer.

5.1– General aspects
As explained above, reasonably sized data caches are usually useless

for processing involving large vectors. Elimination of data caches also avoids cache
coherence problems among different groups. Caches are provided for code, how-
ever, since the locality of code references is independent of the nature of data
accesses. Each group has its own code cache.

To simplify design and implementation, both in hardware and in soft-
ware, all IO will be implemented by a separate IO processor. A standard RISC
server will be used.

The processor will be built with ECL technology, using BIT B3130
floating point processors and Motorola ECLinPS series for logic; the main memory,
however, will use standard MOS memories. The target cycle time is 10 ns; this is the
value assumed in the foregoing simulations.

A basic word length of 64 bits will be used. This word can also be
regarded as two 32 bits words, each with an 8 bit tag, resulting in an 80 bits physical
word.

The arithmetic units will be pipelined and capable of integer and
floating point operations. The latency of all operations is of 5 cycles, except for
divisions and square roots, with 25 and 45 cycles; these last operations are not
pipelined.

The structure will be modular, allowing systems with 2, 4, 8 and 16
groups. Each pair of groups will be connected to one memory module. The proces-
sor with 16 groups corresponds to the drawing of fig 3.



Simulation studies shown that each memory module should have 32
interleaved sub-modules to allow for two simultaneous reads and two simultaneous
writes, limits imposed by technical restrictions on size and density of the backplane.

5.2– Dimensioning the group
The methodology adopted for dimensioning the number of arithmetic

units per group and the number of groups was to evaluate the performance when
executing the Lawrence Livermore Kernels.

The 24 Lawrence Livermore Kernels [9] were used; kernels 14 and 22
were dropped so as to avoid precision considerations with the functions involved.

The kernels were compiled by hand, with care to use only optimiza-
tions that can be expected from a good compiler. The effect of memory conflicts was
taken into account. Asymptotic performance means that the inicialization code was
neglected;  it usually amounts to less the 10 instructions.

In a first stage the study was conducted for architectures with one
group, varying from 1 to 16 arithmetic units; table 1 shows the result, with emphasis
on the increment of the geometric mean from one to the next configuration.

Number
of arith-

metic
units

Asymptotic Performance in MFlops Increment 
of the

geometric
mean
over

previous
value (%)

Minimum Harmonic
mean

Geometric 
mean

Arithmetic
mean Maximum

1 16 42 48 49 97 -

2 20 61 84 98 187 75

3 20 63 93 117 276 11

4 20 64 98 127 355 5

5 20 66 104 139 401 6

6 20 67 115 171 528 6

7 20 68 116 174 528 <  1

8 20 68 117 182 673 <  1

...

16 20 68 117 182 673 <  1*

* relative to 8 arithmetic units

Table 1 - Performance of one group



As can be seen, there are no significant benefits in using more then 2
arithmetic units within a group. This topic is currently receiving much attention, and,
with adequate interpretation, the same conclusion has been found in different
situations [7, 11, 14], and appears to be a quite general property of programs.

The number of functional units has therefore been fixed as two. There
are two couples of address units, one for reads and one for writes; each is composed
of one single reference and one multiple reference unit. A branch unit completes the
set.

5.3– Dimensioning the number of groups
Table 2 shows the same results for configurations with 2, 4, 8 and 16

groups of 2 arithmetic units. Here, the column increment shows the performance
increase over a single group with the same number of arithmetic units. As can be
seen, the exploitation of fine and medium grain parallelism, allowed by the APA
offers an improvement of up to 3.5 times in performance, for configurations with the
same hardware resources. What is more important, the improvement increases as
the number of arithmetic units increases. Table 2 takes in consideration the reduc-
tion in memory bandwidth introduced by the omicron network as the number of
groups increase.

As a result, it is worthwhile to use up to 16 arithmetic units in the APA
architecture, while only 2 makes sense with a conventional polycyclic architecture.
What is more, this can be achieved with register files having the same number of
ports and instructions that have the same basic size in both cases.

6 — Conclusions

The first conclusion is that there is no reduction in performance when
the functional units of a VLIW processor are split into groups with a private register
file and autonomous control. On the contrary, this splitting allows the exploitation of
medium-grain parallelism, resulting in an increase of performance. This splitting

Number
of

groups

Asymptotic Performance in MFlops
Increment of
the geometric
mean over a
single group
configuration

(%)

Increment of
the geometric
mean over a

configuration
with the same

number of
arithmetic units

(%)

Minimum Harmonic
mean

Geo-
metric
mean

Arithmetic
mean

Maximum

2 20 78 123 156 360 46 25

4 20 92 196 296 720 133 67

8 20 102 315 577 1414 275 169

16 20 106 426 937 2880 407 264

Table 2 - Performance of several groups



also allows hardware implementations with register files of only two write ports, and
the use of dynamical instruction sizing: each group has its own instruction stream,
which is used only when required by the available parallelism.

Results of the analysis and simulation of an APA processor are pre-
sented, showing a performance increase of 3.5 times in the geometrical mean of the
full Lawrence Livermore Kernels over a conventional VLIW machine with polycy-
clic extensions.

The inclusion of the features needed to asynchronous operation not
only increased the performance but resulted in a more easily implementable hard-
ware and in shorter instructions.

A final note is about software. It is generally regarded that the hori-
zontal architectures are inferior to other architectural alternatives on the ground
that code is not portable between implementations with different numbers of func-
tional units. This may be true if one takes a strict view about the concept of object
code. Nevertheless, if we call object code the result of compilation just prior to final
code generation, the horizontal architectures can be code-compatible.

The CONVEX series of machines proves that it is possible to break
the compilation process in a series of front-ends for different languages, followed by
a generic optimizer and a generic code generator [3]. For a horizontal architecture,
we can call object code the output of the optimizer, distribute it under this form, and
customize it for a specific machine.
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