
5SE�OF�&INE�AND�-EDIUM�'RAIN�0ARALLELISM
ON�(ORIZONTAL�!RCHITECTURES*

Geraldo Lino de Campos

Escola Politécnica da

Universidade de São Paulo

P. O. Box 8174

São Paulo 01051 - BRASIL

Tel (55)(11)815-9322 ext 3288

e-mail: RTC@FPSP.FAPESP.BR

!BSTRACT

Horizontal architectures can control several functional

units independently, and usually have a single flow of control.

As such, they exploit only the finer parallelism, and a large

number of functional units is useless when the code contains control

or data dependencies. The performance in these cases can be

increased, with the same total hardware, if the functional units

are divided in groups, each with a private register file and with

an independent flow of control.

The main conclusion is that this will neither impair the
performance when many functional units are required, nor affect
the cycle time adversely. Very important side effects are the
reduction on the number of ports in the central register file,
with reduction of the mean instruction size as well. Results are
presented for a processor, now under design, showing that
improvements in the range of 1.6 can be achieved in the geometric
mean of performance when executing the Lawrence Livermore Kernels.

* This research was partly supported by CNPQ grant 105178/92-6.

���)NTRODUCTION

The ever increasing demand for high-speed processors forces

the introduction of more sophisticated instruction pipelines and

increasing degrees of parallelism on the architectures, from

microprocessors to supercomputers. The clock time of the pipelines

is in most part controlled by the available technology; the

architect can only reduce the complexity of the control cycle,

aiming at a small reduction in cycle time. On the other hand, only

the nature of the programs limit the usage of parallelism to

increase performance.

In this paper, fine grain parallelism is defined as the

parallelism that can be achieved within the same thread of control,

and medium grain parallelism is the parallelism obtained by the

replicated execution of the same code block. Coarse grain is a

name reserved for parallelism between different blocks of code,

and it will not be considered further here. It is much simpler to

detect, use and control the medium grain parallelism then the

coarse grain.

The purpose of this paper is to study the limits of

practical usage of parallelism on horizontal architectures.

Horizontal architectures are best represented by VLIW (Very Long

Instruction Word) [Fis83], and its derivatives, as APA (Asynchro-

nous Polycyclic Architecture) [Cam92].

It is shown that it is possible to obtain higher

performance, within the same hardware restrictions, if the

available resources are divided for use with fine and medium grain

parallelisms, as it is done in APA machines.

These results have a broader significance, since [Jou89]

showed that VLIW, superscalar and superpipelined machines are

roughly equivalent in terms of performance and exploitation of

parallelism; we believe the results presented here are valid for

the superscalar and superpipelined machines as well.

This study has been conducted with the intent of dimen-

sioning the number and type of functional units for the implemen-

tation of an APA processor oriented for numerically intensive

problems, and the examples are taken from this domain.

Limits on the available parallelism have been studied in

several papers, with widely varying results, as shown by the

following table, based partially on [Smi89]:

Study Year Speedup

Weiss/Smith 1984 1.58

Tjaden/Flynn 1970 1.8

Sohi 1987 1.8

Acosta et al 1986 2.7

Kuck et al 1972 8

Reisman/Foster 1972 51

Nicolau/Fisher 1984 90

Smith et al 1989 ~2

Jouppi/Wall 1989 ~2 to ~5

There are many reasons for these apparently discrepant

results, because the underlying hypothesis of the various studies

are very different. It is always possible to obtain any desired

degree of parallelism; as an example, the following code has at

least N as degree of parallelism:

DO 1 I = 1, N

1 X(I) = A(I)

Obviously, one cannot obtain a speedup of N by replicating

a ALU N times in an horizontal architecture, for large values of

N, due to memory access limitations, both in the variables and in

the large instruction that will result, even ignoring the question

of feasibility of such a machine. The important issue is that it

is easy to obtain unrealistic measures on the degree of parallelism.

What really matters is the achievable degree of parallelism

in realistic applications, and under reasonable assumptions about

the underlying hardware. For shared memory architectures, it is

unrealistic to expect more than a few accesses to memory in each

cycle, and this factor must be taken into account to have meaningful

results. The effect of latency is of paramount importance, since

processors are generally superpipelined, in the sense defined in

[Jou89].

As a consequence, it is proposed not to measure the degree

of parallelism present in the code, but the increase in performance

that can be obtained by addition of more units of each kind to a

configuration under study. When the resulting performance increase

is small, it is possible to conclude that the useful degree of

parallelism has been reached. This allows all the restrictions

imposed by the configuration to be taken into account.

This paper is organized in 4 sections. The following

section presents the main features of the APA, and typical

programming techniques to exploit them. In section 3, the

methodology used to conduct the available parallelism study is

introduced, and the results are presented. Section 4 offers a few

concluding remarks.

���!SYNCHRONOUS�POLYCYCLIC�ARCHITECTURE

The asynchronous polycyclic architecture resulted from a

critical analysis of the characteristics of the VLIW architecture.

A VLIW processor is conceptually characterized by [Fis83]:

1 - a single thread of execution;

2 - a large number of data paths and functional units,

with control planned at compile time;

3 - instructions providing enough bits to control the

action of every functional unit directly and independently in each

cycle;

4 - operations that require a small and predictable number

of cycles to execute;

5 - Each operation can be pipeline, i. e., each functional

unit can initiate a new operation in each cycle.

In terms of hardware, the ideal VLIW processor should have

many functional units connected to a large central register file.

Each functional unit would ideally have several read ports (two

for arithmetic units) and a write port to the register file. Also

the register file would have enough bandwidth to allow any

combination of accesses generated by the functional units.

Unfortunately, the hardware described above is unrealis-

tic. Every implementation adopted several ad hoc solutions to make

it implementable.

On examining the conceptual characterization, it becomes

clear that the rationale is to have a large degree of parallelism

and a simple, and therefore fast, control cycle. Closer scrutiny

shows two relevant aspects:

First, condition 1 does not contribute to any of these

objectives. It is possible, at least at the conceptual level, to

have a situation where every functional unit has its own cache and

control logic, and therefore be capable of executing its own thread

of control. This would add some circuitry, but it would not add

any delays to the processor cycle.

Second, condition 4 is unfeasible for the functional units

in charge of memory accesses, at least for high performance

processors, due to unpredictable memory bank conflicts. This can

be circumvented by considering that the processor remains synchro-

nous in virtual time, stalling if data is not available when

expected to be, but this may have a substantially adverse effect

on performance.

The first new APA feature solves the memory access problem

by decoupling the process of memory access. Two kinds of functional

units are used: the first, called address unit, generates and sends

the required addresses to the memory subsystem; the second, called

data reference unit, is responsible for reordering data words

coming from memory and to send them to other functional units.

Address units may operate in two modes: single address and

multiple addresses. In the single address mode, its role is only

to receive an address calculated by an arithmetic unit and send

it to the memory subsystem; in the multiple addresses mode, its

role is to autonomously generate the values of a set of arithmetic

progressions, until a specified number of elements are generated;

this mode is used for references to (a set of) arrays. Once

started, the address unit can proceed asynchronously with the

main flow of control: it generates as many addresses as the memory

subsystem can accept, waits if the memory subsystem cannot accept

new requests, resumes execution when this condition is withdrawn

and stops when all addresses have been generated.

The consequences are the following: the memory subsystem

operates at full capacity and the main flow of control is not

disturbed by saturation of the memory subsystem. As for hardware,

fewer bits are required in the instruction, since the units are

controlled by their own instructions, and also less ports are

required in the central register file, since the address

processors can use a local copy of the required registers.

By extending these ideas, it is possible to conceive an

architecture where subsets of functional units can be split from

the main flow of control and start operating with their own flow

of control, until the execution of a stop instruction. Then, the

respective functional units will be returned to the main control

flow.

Experience in programming such a machine shows that it

is unduly complicated. Very few situations require odd divisions

of the functional units. A hierarchical system of two levels is

adequate for almost all situations: the functional units can be

divided in GROUPS, composed of a certain number of arithmetic

units, each capable of forking the operation of the address units.

Experience shows also that the communication between

groups is seldom done. An important consequence is that there is

no need to share a central register file between groups; each

group can use its own, provided it is able to send values to the

other groups.

The consequences again are the reduction in the number

of bits required in the instruction, since each group is

controlled by their own instructions, and fewer ports are required

in the central register file, since each group uses a local set

of registers.

Efficient usage of those characteristics requires two

other features: eager execution and delayed interrupts. To keep

the functional units busy, values should be calculated as soon

as possible, regardless the possibility of the control flow

rendering them unnecessary. A consequence is that abnormal

conditions (like division by zero, references to invalid

addresses, etc) can arise. To postpone the resulting interrupts,

a result descriptor is appended to every value in the central

register file. All operations performed with this value will have

the original interrupt as its result descriptor. The interrupt

occurs only when the value is effectively used - stored in memory

or used for a branch decision.

This result descriptor also contains the condition code

associated to the generation of the value, and thus can be used

as a predicate to control the conditional execution of instruc-

tions.

Efficient execution of loops is obtained by use of a

variant of polycyclic support; since its basics are described

elsewhere [Den89], it will not be described here. The hardware

support includes automatic prolog, epilog and predicate-control-

led execution of instructions.

The result of these characteristics is a processor with

higher performance as compared to an equivalent VLIW, implemented

with register files with few ports, and with dynamic word size:

each group is small, and at any moment only the active ones must

fetch instructions. For instance, the machine resulting from the

dimensioning studied in the next section uses register files with

only two write ports, and group instructions of only 64 bits.

Furthermore, this permits the exploitation of the medium

grain parallelism, by splitting loops where control or data

dependencies force the use of few functional units per thread.

Medium grain parallelism is useful when executing loops.

In the following, all the code contained in an inner loop will

be called a BLOCK; it is not necessarily a basic block.

Every block can be characterized in one of the following

categories:

1. Blocks without data or control dependencies

These blocks can be executed entirely by one group, or,

if the relation of the number of operations to the number of

variables used is high, the loop can be divided among a sufficient

number of groups to allow the use of all bandwidth to memory and

all functional units. This category also includes a few particular

cases of easily resolved cases of data dependency, like the sum

of products.

As an example, the loop

 DO 1 I = 1, N

 1 S = S + A(I) * B(I)

can be split to

DO 1 I = 1, N, 2 DO 1 I = 2, N, 2

1 S = S + A(I)*B(I) 1 S = S + A(I)*B(I)

each executed in a different group, followed by the

addition of the values of S. (Since each group has its own set

of registers, there is no renaming problem with S and I)

2. Blocks with control dependencies

Blocks with control dependencies have their performance

limited by latency of the instructions that establish conditions

and by the branch instructions. This can be improved in two ways.

To a limited extent, it can be circumvented by the predicated-

controlled execution. A more general solution is to divide the

loop among a sufficiently large number of groups, until the full

memory bandwidth is achieved.

3. Blocks with data dependencies

It is generally difficult or impossible to parallelize

blocks with data dependencies. If the data dependency is immediate

and the block is short, a technique that might be used is to

increase the data dependency length and execute the resulting

blocks on several groups. This technique is generally limited to

an expansion from a dependency of one to two dependencies of two.

As an example, the following loop

DO 11 K = 2, N

11 X(K) = X(K-1) + Y(K)

can be split to

X(2) = X(1) + Y(1)

DO 11 K = 3, N, 2 DO 11 K = 4, N, 2

11 X(K)=X(K-2)+Y(K-1)+Y(K) 11 X(K)=X(K-2)+Y(K-1)+Y(K)

���-ETHODOLOGY�AND�RESULTS

This section deals with the determination of the available

fine and medium grain parallelism on numerically intensive

applications.

The 24 Lawrence Livermore Kernels [Mah86] were used;

kernels 14 and 22 were dropped so as to avoid precision

considerations with the functions involved .

To be realistic, a preliminary study of the memory

subsystem characteristics was conducted, with the conclusion that

the number of read accesses per cycle should be twice of the write

accesses. Code was supposed to be already in cache.

The kernels were compiled by hand, with care to use only

optimizations that can be expected from a good compiler. The

effect of memory conflicts was taken into account.

The hardware characteristics assumed were a cycle time

of 10 ns, all operations pipelined with a latency of 5 cycles,

except for divisions and square roots, with 25 and 45 cycles,

unpipelined.

In a first stage the study was conducted for architectures

with one group, varying from 1 to 8 arithmetic units, and then

from 2 to 4 groups with 2 arithmetic units each. The memory

subsystem is supposed to have a total of 3 accesses per cycle up

to 4 arithmetic units, and 6 thereafter.

Tables 1 and 2 show the results. Table 1 makes clear that

there is a significant increase in performance from one to two

arithmetic units, and small advantages thereafter; this was the

basis for selecting groups with two arithmetic units. These

Assintotic performance in megaflops

Arithmetic
Units

Minimum
Harmonic

Mean
Geometric

Mean
Arithmetic

Mean
Maximum

Variation of the
geometric mean

from the previous
value (in %)

1 16 42 48 49 97

2 20 61 84 98 187 75

3 20 63 93 117 276 11

4 20 64 98 127 355 5

5 20 66 104 139 401 6

6 20 67 115 171 528 6

7 20 68 116 174 528 < 1

8 20 68 117 182 673 < 1

...

16 20 68 118 182 673 < 1 (relative to 8)

Table 1 - Performance with fine grain parallelism

configurations exploit only fine grain parallelism, although they

have all the other APA features described above.

Assintotic performance in MFlops

Number of
Groups
with 2

Arithmetic
Units

Minimum
Harmonic

Mean
Geometric

Mean
Arithmetic

Mean
Maximum

Increase of the
geometric mean

from the fine grain
equivalent

configuration (in %)

2 20 74 113 142 356 35

4 20 90 179 265 713 53

8 20 100 288 516 1426 144

Table 2 - Performance with fine and medium grain parallelism

Kernels ordered by performance

1,5

1,4

1,3

1,2

1,1

1

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0

fine grain only fine plus medium

Graphic 1 - Performance with 16 arithmetic units

 MFlops

Table 2 shows the same results for configurations with

2, 4 and 8 groups of 2 arithmetic units. These configurations

exploit both fine and medium grain parallelism, and present an

improvement of up to 144% when compared with the values in table

1 for a configuration with the same hardware resources. As should

be expected, the improvement increases as hardware resources

increase. This table shows also the strong influence of the number

of simultaneous accesses to memory.

Graphic 1 compares the individual behavior of the kernels

for the situation with 16 arithmetic units, using only fine grain

and fine and medium grain parallelism. In this graph, the kernels

are ordered by increasing performance.

It is important to note that the more significant increase

in performance occurs at the kernels with medium performance.

Since where most practical applications are in this range, the

improvement occurs where it is most useful.

���#ONCLUSIONS

In this paper the concepts of using both fine and medium

grain parallelism and of evaluating the usable parallelism by

selectively adding functional units are introduced.

The asynchronous polycyclic architecture (APA), an ar-

chitecture developed to exploit the medium grain parallelism, is

briefly outlined.

Results of the analysis and simulation of an APA processor

are presented, showing a performance increase of 144% in the

geometrical mean of the full Lawrence Livermore Kernels when

medium grain parallelism is added to the basic horizontal

architecture.

The main conclusion is that there is no reduction in

performance when the functional units of a VLIW processor are

split into groups with a private register file and autonomous

control. On the contrary, this splitting allows the exploitation

of medium grain parallelism, resulting in an increase of

performance. This splitting also allows hardware implementations

with register files of only two write ports, and the use of

dynamical instruction sizing: each group has its own instruction

stream, which is used only when required by the available

parallelism.

The inclusion of the features needed to support medium

grain parallelism not only increased the performance but resulted

in a more easily implementable hardware and in shorter instruc-

tions.

"IBLIOGRAPHY

[Cam92] Campos, G. L. "Asynchronous Polycyclic Architecture."

Parallel Processing: CONPAR 92-VAPP V (Lecture Notes

in Computer Science, vol 634), Springer-Verlag, setem-

bro de 1992

[Den89] Dehnert, J. C., Hsu, P. Y.T., Bratt, J. P., "Overlapped

Loop Support in the Cydra 5", 3rd Int. Conf. on

Architectural Support for Programming Languages and

Operating Systems, 26-38, April 1989

[Fis83] Fisher, J. A. "Very Long Instruction Word Architectures

and the ELI-512", IEEE Conf. Proc. of the 10th Annual

Int. Symp. on Comput. Architecture, 140-150, June 1983.

[Jou89] Jouppi, N. P. and Wall, D. W., "Available Instruction-

level Parallelism for Superscalar and Superpipelined

Machines", 3rd Int. Conference on Architectural Support

for Programming Languages and Operating Systems, 272-

282, April 1989.

[Mah86] McMahon, F. H. "The Livermore Fortran Kernels: A

Computer Test of the Numerical Performance Range,"

Lawrence Livermore Nat’l Laboratory Report No. UCRL-

53745, Livermore, CA, Dec. 1986.

[Smi89] Smith, M. D., Johnson, M. and Horowitz, M. A. "Limits

on Multiple Instruction Issue", 3rd Int. Conference on

Architectural Support for Programming Languages and

Operating Systems, 290-302, April 1989.

