Use of Fine and Medium Grain Parallelism
on Horizontal Architectures*

Geraldo Lino de Campos

Escola Politécnica da
Universidade de S&o Paulo

P. O. Box 8174

S&o Paulo 01051 - BRASIL

Tel (55)(11)815-9322 ext 3288
e-mail: RTC@FPSP.FAPESP.BR

Abstract

Horizontal architectures can control several functional
units independently, and usually have a single flow of control.
As such, they exploit only the finer parallelism and a |arge
nunber of functional unitsis usel ess when t he code cont ai ns control
or data dependencies. The performance in these cases can be
i ncreased, with the sane total hardware, if the functional units
are divided in groups, each with a private register file and wth
an i ndependent flow of control.

The main conclusion is that this will neither inpair the
performance when many functional units are required, nor affect
the cycle tinme adversely. Very inportant side effects are the
reduction on the nunber of ports in the central register file,
wi th reduction of the nean instruction size as well. Results are
presented for a processor, now under design, show ng that
| nprovenents in the range of 1.6 can be achieved in the geonetric
mean of performance when executing the Law ence Li vernore Kernels.

* This research was partly supported by CNPQ grant 105178/ 92- 6.

1. Introduction

The ever increasi ng demand for hi gh-speed processors forces
the introduction of nore sophisticated instruction pipelines and
I ncreasing degrees of parallelism on the architectures, from
m croprocessors to superconputers. The clock tinme of the pipelines
iIs in nost part controlled by the available technology; the
architect can only reduce the conplexity of the control cycle,
aimng at a small reduction in cycle tine. On the other hand, only
the nature of the prograns |limt the usage of parallelism to
I ncrease performance.

In this paper, fine grain parallelismis defined as the
paral | el i smthat can be achi eved within the sanme thread of control,
and nedium grain parallelismis the parallelism obtained by the
replicated execution of the sanme code block. Coarse grain is a
name reserved for parallelism between different bl ocks of code,
and it wll not be considered further here. It is much sinpler to
detect, use and control the nedium grain parallelism then the
coarse grain.

The purpose of this paper is to study the limts of
practical usage of parallelism on horizontal architectures.
Hori zontal architectures are best represented by VLIW (Very Long
Instruction Wrd) [Fis83], and its derivatives, as APA (Asynchro-
nous Pol ycyclic Architecture) [CanB2].

It is shown that it is possible to obtain higher
performance, wthin the sanme hardware restrictions, if the
avai | abl e resources are divided for use with fine and nmedi umgrain
parallelisns, as it is done in APA machi nes.

These results have a broader significance, since [Jou89]
showed that VLIW superscalar and superpipelined machines are
roughly equivalent in terns of performance and exploitation of
paral lelism we believe the results presented here are valid for
t he superscal ar and superpi pelined machi nes as wel | .

This study has been conducted with the intent of dinen-
si oni ng the nunber and type of functional units for the inplenen-
tation of an APA processor oriented for nunerically intensive
probl ens, and the exanples are taken fromthis domain.

Limts on the available parallelismhave been studied in
several papers, with wdely varying results, as shown by the
followi ng table, based partially on [Sm 89]:

St udy Year Speedup
Wi ss/ Smth 1984 1.58

Tj aden/ Fl ynn 1970 1.8

Sohi 1987 1.8
Acosta et al 1986 2.7

Kuck et al 1972 8

Rei sman/ Fost er 1972 51

Ni col au/ Fi sher 1984 90

Smth et al 1989 ~2
Jouppi / Val | 1989 ~2 to ~5

There are many reasons for these apparently discrepant
results, because the underlying hypothesis of the various studies
are very different. It is always possible to obtain any desired
degree of parallelism as an exanple, the foll ow ng code has at
| east N as degree of parallelism

DO11 =1, N
1 X(1) = A(l)

Obvi ously, one cannot obtain a speedup of N by replicating
a ALU Ntinmes in an horizontal architecture, for |arge val ues of
N, due to nenory access |limtations, both in the variables and in
the large instruction that will result, even ignoring the question
of feasibility of such a machine. The inportant issue is that it
IS easy to obtainunrealistic neasures onthe degree of parallelism

What really matters i s the achi evabl e degree of parallelism
in realistic applications, and under reasonabl e assunptions about

t he underlying hardware. For shared nenory architectures, it is
unrealistic to expect nore than a few accesses to nenory in each
cycle, and this factor nust be taken into account to have neani ngf ul
results. The effect of latency is of paranount inportance, since
processors are generally superpipelined, in the sense defined in
[Jou89] .

As a consequence, it is proposed not to neasure the degree
of parallelismpresent inthe code, but the increase in perfornmnce
that can be obtained by addition of nore units of each kind to a
configuration under study. Wen the resul ting performance i ncrease
Is small, it is possible to conclude that the useful degree of
paral l elism has been reached. This allows all the restrictions
I nposed by the configuration to be taken into account.

This paper is organized in 4 sections. The follow ng
section presents the main features of the APA, and typical
progranm ng techniques to exploit them In section 3, the
met hodol ogy used to conduct the available parallelism study is
I ntroduced, and the results are presented. Section 4 offers a few
concl udi ng remarks.

2. Asynchronous polycyclic architecture

The asynchronous polycyclic architecture resulted froma
critical analysis of the characteristics of the VLI Warchitecture.

A VLI Wprocessor is conceptually characterized by [Fi s83]:

1 - a single thread of execution;

2 - a large nunber of data paths and functional units,
with control planned at conpile tine;

3 - instructions providing enough bits to control the
action of every functional unit directly and i ndependently in each
cycl e;

4 - operations that require a small and predi ctabl e nunber
of cycles to execute;

5 - Each operation can be pipeline, i. e., each functi onal
unit can initiate a new operation in each cycle.

Interns of hardware, the ideal VLIWprocessor shoul d have
many functional units connected to a | arge central register file.
Each functional unit would ideally have several read ports (two
for arithmetic units) and a wite port to the register file. Al so
the register file would have enough bandw dth to allow any
conbi nati on of accesses generated by the functional units.

Unfortunately, the hardware described above is unrealis-
tic. Every inplenentation adopted several ad hoc sol utions to nake
It inplenmentable.

On exam ning the conceptual characterization, it becones
clear that the rationale is to have a | arge degree of parallelism
and a sinple, and therefore fast, control cycle. Coser scrutiny
shows two rel evant aspects:

First, condition 1 does not contribute to any of these
objectives. It is possible, at least at the conceptual level, to
have a situation where every functional unit has its own cache and
control logic, and therefore be capabl e of executingits own thread
of control. This would add sone circuitry, but it would not add
any delays to the processor cycle.

Second, condition 4 is unfeasible for the functional units
in charge of nenory accesses, at |east for high performance
processors, due to unpredictable nenory bank conflicts. This can
be ci rcunvent ed by consi dering that the processor renmains synchro-
nous in virtual time, stalling if data is not available when
expected to be, but this nmay have a substantially adverse effect
on performance.

The first new APA feature sol ves the nmenory access probl em
by decoupling the process of nenory access. Two ki nds of functi onal
units are used: the first, call ed address unit, generates and sends
the required addresses to the nenory subsystem the second, called
data reference unit, is responsible for reordering data words
comng fromnenory and to send themto other functional units.

Address units nmay operate in tw nodes: single address and
mul ti pl e addresses. In the single address node, its role is only
to receive an address calculated by an arithmetic unit and send

it to the nmenory subsystem in the nultiple addresses node, its
roleis to autononously generate the val ues of a set of arithnetic
progressions, until a specified nunber of el enents are generat ed;
this node is used for references to (a set of) arrays. Once
started, the address unit can proceed asynchronously with the
mai n fl owof control: it generates as many addresses as the nenory
subsystemcan accept, waits if the nenory subsystemcannot accept
new requests, resumes execution when this condition is wthdrawn
and stops when all addresses have been generated.

The consequences are the follow ng: the nmenory subsystem
operates at full capacity and the main flow of control is not
di sturbed by saturation of the menory subsystem As for hardware,
fewer bits are required in the instruction, since the units are
controlled by their own instructions, and also |less ports are
required in the central register file, since the address
processors can use a |local copy of the required registers.

By extending these ideas, it is possible to conceive an
architecture where subsets of functional units can be split from
the main flow of control and start operating with their own flow
of control, until the execution of a stop instruction. Then, the
respective functional units will be returned to the main control
flow.

Experience in programm ng such a machine shows that it
I's unduly conplicated. Very few situations require odd divisions
of the functional units. A hierarchical systemof two levels is
adequate for alnost all situations: the functional units can be
divided in groups, conposed of a certain nunber of arithnetic
units, each capabl e of forking the operation of the address units.

Experience shows also that the conmmunication between
groups is sel domdone. An inportant consequence is that there is
no need to share a central register file between groups; each
group can use its own, provided it is able to send values to the
ot her groups.

The consequences again are the reduction in the nunber
of bits required in the instruction, since each group is
controlled by their owmninstructions, and fewer ports are required

in the central register file, since each group uses a |ocal set
of registers.

Efficient usage of those characteristics requires two
ot her features: eager execution and delayed interrupts. To keep
the functional units busy, values should be cal culated as soon
as possible, regardless the possibility of the control flow
rendering them unnecessary. A consequence is that abnornal
conditions (like division by zero, references to invalid
addresses, etc) can arise. To postpone the resulting interrupts,
a result descriptor is appended to every value in the centra
register file. All operations perforned with this value wll have
the original interrupt as its result descriptor. The interrupt
occurs only when the value is effectively used - stored in nenory
or used for a branch deci sion.

This result descriptor also contains the condition code
associated to the generation of the value, and thus can be used
as a predicate to control the conditional execution of instruc-
tions.

Efficient execution of |oops is obtained by use of a
variant of polycyclic support; since its basics are described
el sewhere [Den89], it will not be described here. The hardware
support includes automatic prol og, epilog and predicate-control -
| ed execution of instructions.

The result of these characteristics is a processor with
hi gher performance as conpared to an equi val ent VLIW i npl enent ed
with register files with few ports, and with dynam c word size:
each group is small, and at any nonment only the active ones nust
fetch instructions. For instance, the machine resulting fromthe
di mensi oni ng studi ed i n the next section uses register fileswith
only two wite ports, and group instructions of only 64 bits.

Furthernore, this permts the exploitation of the nmedium
grain parallelism by splitting |oops where control or data
dependencies force the use of few functional units per thread.

Mediumgrain parallelismis useful when executing | oops.
In the followng, all the code contained in an inner |oop wll
be called a block; it is not necessarily a basic bl ock.

Every bl ock can be characterized in one of the foll ow ng
categori es:

1. Blocks wthout data or control dependencies

These bl ocks can be executed entirely by one group, or,
if the relation of the nunber of operations to the nunber of
vari abl es used i s high, the | oop can be di vi ded anong a suffici ent
nunber of groups to allow the use of all bandwi dth to nenory and
all functional units. This category al soincludes afewparticular
cases of easily resolved cases of data dependency, |like the sum
of products.

As an exanple, the | oop
DO11I1 =1, N
1 S =S+ A(l) * B(l)

can be split to

DO11 =1, N 2 DO11 =2, N 2
1 S=8S+ A)*B(I) 1 S=5S+ A1)*B(I)

each executed in a different group, followed by the
addition of the values of S. (Since each group has its own set
of registers, there is no renamng problemwith S and I)

2. Blocks with control dependencies

Bl ocks with control dependenci es have their performance
limted by | atency of the instructions that establish conditions
and by the branch instructions. This can be inproved i n two ways.
To a limted extent, it can be circunvented by the predicated-
controll ed execution. A nore general solution is to divide the

| oop anong a sufficiently |arge nunber of groups, until the ful
menory bandwi dth is achi eved.

3. Blocks with data dependencies

It is generally difficult or inpossible to parallelize
bl ocks wi t h dat a dependenci es. If the data dependency i s i nmedi at e
and the block is short, a technique that mght be used is to
I ncrease the data dependency |length and execute the resulting
bl ocks on several groups. This technique is generally limted to
an expansi on froma dependency of one to two dependenci es of two.

As an exanple, the follow ng | oop

DO 11 K = 2, N
11 X(K) = X(K-1) + Y(K)

can be split to
X(2) = X(1) + Y(1)
DO 11 K= 3, N, 2 DO 11 K=4, N, 2
11 X(K) =X(K- 2) +Y(K- 1) +Y(K) 11 X(K) =X(K- 2) +Y(K- 1) +Y(K)

3. Methodology and results

Thi s section deal s with the determ nati on of the avail abl e
fine and nedium grain parallelism on nunerically intensive
appl i cations.

The 24 Lawence Livernore Kernels [Mah86] were used;
kernels 14 and 22 were dropped so as to avoid precision
considerations with the functions involved .

To be realistic, a prelimnary study of the nenory
subsystemcharacteristics was conducted, with the concl usi on t hat
t he nunber of read accesses per cycl e should be twice of the wite
accesses. Code was supposed to be already in cache.

Table 1 - Performance with fine grain parallelism

Assintotic performance in megaflops

Variation of the
Arithmetic - Harmonic Geometric Arithmetic . geometric mean
. Minimum Maximum)
Units Mean Mean Mean from the previous

value (in %)

1 16 42 48 49 97

2 20 61 84 98 187 75

3 20 63 93 117 276 11

4 20 64 98 127 355 5

5 20 66 104 139 401 6

6 20 67 115 171 528 6

7 20 68 116 174 528 <1

8 20 68 117 182 673 <1

16 20 68 118 182 673 < 1 (relative to 8)

The kernels were conpiled by hand, with care to use only
optim zations that can be expected from a good conpiler. The
effect of nenory conflicts was taken into account.

The hardware characteristics assuned were a cycle tine
of 10 ns, all operations pipelined with a latency of 5 cycles,
except for divisions and square roots, with 25 and 45 cycles,
unpi pel i ned.

Inafirst stage the study was conducted for architectures
with one group, varying from1l to 8 arithnmetic units, and then
from 2 to 4 groups wth 2 arithmetic units each. The nenory
subsystemis supposed to have a total of 3 accesses per cycle up
to 4 arithnetic units, and 6 thereafter.

Tables 1 and 2 showthe results. Table 1 nakes cl ear that
there is a significant increase in performance fromone to two
arithnmetic units, and small advantages thereafter; this was the
basis for selecting groups with two arithnetic units. These

Graphic 1 - Performance with 16 arithmetic units

VFI ops
1,5

1,4
13
1,2
11

09 |
0,8 |
0,7
06 _|
05 |
0,4
03 |
0,2
0,1

Kernels ordered by performgr~a
+

O fine grain only fine plus medium

configurations exploit only fine grain parallelism although they
have all the other APA features described above.

Table 2 - Performance with fine and medium grain parallelism

Assintotic performance in MFlops

Number of Increase of the
Grp ups - Harmonic Geometric Arithmetic . geometrl_c mean
with 2 Minimum Maximum from the fine grain

. . Mean Mean Mean .

Arithmetic equivalent

Units configuration (in %)
2 20 74 113 142 356 35
4 20 90 179 265 713 53

8 20 100 288 516 1426 144

Table 2 shows the sane results for configurations with
2, 4 and 8 groups of 2 arithmetic units. These configurations
exploit both fine and nedium grain parallelism and present an
| mprovenent of up to 144% when conpared with the values in table
1 for aconfiguration with the same hardware resources. As shoul d
be expected, the inprovenent increases as hardware resources
I ncrease. This tabl e shows al so the strong i nfl uence of the nunber
of simultaneous accesses to nenory.

G aphic 1 conpares the individual behavior of the kernels
for the situation wth 16 arithnmetic units, using only fine grain
and fine and nediumagrain parallelism In this graph, the kernels
are ordered by increasing perfornmance.

It isinportant to note that the nore significant increase
In performance occurs at the kernels with medi um perfornmance.
Since where nost practical applications are in this range, the
| mprovenent occurs where it is nost useful.

4. Conclusions

In this paper the concepts of using both fine and nmedi um
grain parallelism and of evaluating the usable parallelism by
sel ectively adding functional units are introduced.

The asynchronous polycyclic architecture (APA), an ar-
chitecture devel oped to exploit the nediumgrain parallelism is
briefly outlined.

Resul ts of the anal ysis and sinul ati on of an APA processor
are presented, showing a performance increase of 144% in the
geonetrical nean of the full Lawence Livernore Kernels when
medium grain parallelism is added to the basic horizontal
architecture.

The main conclusion is that there is no reduction in
performance when the functional units of a VLIW processor are
split into groups wth a private register file and autononous
control. On the contrary, this splitting allows the exploitation
of medium grain parallelism resulting in an increase of
performance. This splitting al so all ows hardware inpl enentations
wth register files of only two wite ports, and the use of
dynam cal instruction sizing: each group has its own instruction

stream which is used only when required by the available
paral |l el i sm

The inclusion of the features needed to support nedi um
grain parallelismnot only increased the performance but resulted
in a nore easily inplenmentable hardware and in shorter instruc-
tions.

Bibliography

[CanD2] Canpos, G L. "Asynchronous Pol ycyclic Architecture.”
Paral | el Processing: CONPAR 92-VAPP V (Lecture Notes
I n Conputer Science, vol 634), Springer-Verlag, setem
bro de 1992

[Den89] Dehnert, J. C., Hsu, P. Y. T., Bratt, J. P., "Overl apped
Loop Support in the Cydra 5", 3rd Int. Conf. on
Architectural Support for Programm ng Languages and
Qperating Systens, 26-38, April 1989

[Fis83] Fisher, J. A "Very Long Instruction Wrd Architectures
and the ELI-512", IEEE Conf. Proc. of the 10th Annual
Int. Synp. on Conput. Architecture, 140-150, June 1983.

[Jou89] Jouppi, N. P. and Wall, D. W, "Available Instruction-
| evel Parallelism for Superscalar and Superpipelined
Machi nes”, 3rd Int. Conference on Architectural Support
for Programm ng Languages and Operating Systens, 272-
282, April 1989.

[Mah86] McMahon, F. H. "The Livernore Fortran Kernels: A
Conputer Test of the Nunerical Perfornmance Range,”
Lawrence Livermore Nat'l Laboratory Report No. UCRL-

53745, Livermore, CA, Dec. 1986.

[Sm 89] Smith, M D., Johnson, M and Horowitz, M A "Limts
on Multiple Instruction Issue”, 3rd Int. Conference on
Architectural Support for Programm ng Languages and
Qperating Systens, 290-302, April 1989.

