Implementing Sub-word Operations in Word-oriented Architectures*

Geral do Lino de Canpos
Escola Politécnica da Universidade de S&o Paulo
Séo Paulo 05508-900, Brazil
Phone: + 55 11 8159322 ext 5288
e-mail: RTC@FPSP.FAPESP.BR

Abstract

This paper presents a proposal for handling sub-words (bytes, 16 and
32 bit-fields) in word-oriented architectures. The proposal is based on using
addresses expressed in units of bytes, and on keeping the low-order bits of the
address attached to words read from memory. These bits are used by especial
instructions to do the extract/insert operations. The solution holds for any
unaligned accesses to sub-words even when the architecture supports only aligned
accesses to words. Performance implications for machines with or without caches
are examined, and extensions to arbitrary bit fields are proposed.

Keywords

byte operations, partial words, caches

* This research was partially supported by the CNPQ grant
501971/91-6

1 Introduction and notation

The current trend in high-performance conputers is to define
oriented architectures ; this trend can be seen, for instance, in the Digital's
ALPHA Architecture [DEC92]. This trend is motivated by performance requirements,
since the existence of an alignment network contributes to lengthening the clock
cycle. The same performance requirements dictates large word sizes, typically
64 bits.

Operations on smaller data fields are still required, however. We
shall distinguish between arbitrarily sized fields, usually called subfields,
and sizes that are multiples of bytes, that we will call subwords in this paper.
This paper is concerned only with subwords, although most of the ideas can be
extended to handling arbitrary subfields, if the architecture is properly
designed.

The most relevant type of subword is the byte, for its importance in
character operations. However, it can be anticipated that 2 bytes fields will
become equally important with the future adoption of UNICODE for representing
characters in an international environment, and a general mechanism encompassing
one, two or four bytes subwords are required in other contexts. The implementa-
tion proposed in this paper cover all those cases.

Many architectures offer only partial solutions to the handling of
subwords. ALPHA, for instance, only offers a good solution for the case of fully
aligned strings, which certainly is not the general situation, since there are
no published data supporting the concept that compilers can always make strings
word-aligned. The possibility of unaligned loads alleviate somewhat this
problem, but still it is not a general solution.

In this paper, word will be used for designing the physical word of
the machine, supposed with at least 64 bits, with doubleword meaning two
consecutive machine words, and byte, dibyte, tetrabyte, ... to refer to subwords
of size 8, 16, 32, ... bits. A memory access to a subword s in memory address x
will be called aligned if x mod s = 0, and unaligned otherwise.

In this paper an implementation of subword operations based on keeping
the low-order bits of the address with every word fetched from memory is
presented. The implementation proposed does not use dedicated alignment
networks, but uses specific ALU operations, built upon shifts and logical
operations that are present in almost any conceivable ALU, and allows unaligned
references to subwords even if the architecture supports only aligned word
references. The key elements are:

useaddressesexpressedinbytes,eveninword-orientedarchitectures;

ignore the low-order bits of the address when doing a memory fetch
for a word, but preserve and attach them to the data received from
memory;

this lower-order address bits are used by especial instructions to
extract/insertthe sub-word; they are hidden for other instructions,
except that they are copied by move register instructions.

wor d-

64 bit
address to
address
Mmemory
3 lower—order bits PROCESSOR
data from data plus
memory hidden bits

Figure 1 - Proposed architecture

In the case of 64 bit word size, when a request to address x is sent
to menory subsystem the 3 lower bits are kept, and the remaining bits are
effectively sent to the nmenory subsystem Wen the corresponding data arrives,
it is tagged with the 3 |ower-order bits of the original address, and sent to
the specified destination. These bits will remain hidden, will be called index
and referred as | (Rx), where Rx is the register nunber , and will be used only
by the prosed ExtractX and InsertX instructions. In these instructions, which
will be detailed later, X specifies the nunber of bits extracted/inserted by the
instructions. In nost of this paper the allowed values of X are restricted to
powers of 2, starting at 8 (8, 16, 32, ...). For sake of sinplicity, the word
size will be considered to 64 bits in all exanples.

Fields within words will be described as [a: b], where a designates
the leftnost bit affected, and b is the nunber of bits. The |east significant
bit is 0. The notation A << B nmeans A shifted left logically by B bits. ONES
will stand for a word with all bits on.

G her nennonics for instructions are taken from the nachine DLX,
descri bed in [Hen90].

This paper is organized as follows: section 2 presents the working of
the proposed instructions in a nmachi ne which uses a two-way associ ative cache
and aligned references, showing the basic principle; section 3 studies the nore
compl ex cases of wite-thru caches and decoupl ed access/execute architectures.
Section 4 concentrates cost considerations. Section 5 discusses the extensions
for unaligned references and arbitrary partial words, and section 6 presents
sone concl udi ng renarKks.

2 The basic mechanism

In this section it supposed that all data is aligned, and that there
is a twd-way associative wite-back cache, so repeated reads or wites to the
same |l ocation take only one clock cycle. These restrictions will be elimnated
in later sections.

To inplement subword operations, the |ower-order bits of the address
are kept when the effective addresses sent to the menory (including cache)
subsystem These | ower order address bits are appended to the word read; these
bits will be hidden for all instructions except ExtractX and InsertX, and
instructions that only nove registers. Usually, imediately after reading the
partial word will be extracted by a one of those instructions. Figure 1 shows
the general mnechanism of appending the |ower order address bits to the read
wor ds.

The instruction ExtractX will use the index bits for extracting the
addressed field, using the already present ALU logic. Different instructions
shoul d be provided for extracting fields of different sizes (8, 16, 32
bits). Depending on details of the architecture, we may have signed and unsi gned
options for each size.

The functionality of the ExtractX Rs, Rd instruction is:
Rd = Rs [I (R) * 8 + (X1) : X]

A typical loop for conparing null-term nated strings of bytes starting
at arbitrary addresses in Rl and R4 woul d be

Test: LCAD (R1),R2
Extract8 R2, R3
LQAD (R4),R5
Extract8 R5, R6
CwP R3, R6
BNE DifferentStrings
CwP R3, O
BZ Equal Str
I NC R, 1
I NC R4, 1
JUWP Test

Equal Str: ...

By changi ng Extract8 and increnenting by the proper anount, the above
code conpares strings of any subword size

After the first read of a word, subsequent accesses will be from
cache, and the code will not incur in any special tinme penalty for the repeated
r eadi ngs.

Wite operations follow the sane general pattern, but the destination
word nmust be read in every execution of the |oop, since this is cheaper than
testing for word boundary, due to the fact that the destination word is already
on the cache.

The functionality of the Insert X Rb, Rs, Rd instruction is

Rd = Ro AND((ONESANDO[X- 1: X] <<I(Rb)*8) OR(Rs [X-1:X <<
I(Rp)*8))

In the exanple below, the null-term nated string of subwords of size
X at an arbitrary address pointed to by RlL is copied to the address contai ned
in R4:

Copy: LCAD (R1),R2
Extract X R2, R3
LOAD (R4), RS
I nsertX R5, R3, R5
Store (R4), RS
Bz Copi ed
I NC R1, si ze(X)
I NC R4, si ze(X)
JUWP Copy

Copi ed:

3 System considerations

From a software standpoint, the above solutions work wth any
architecture. The efficiency, however, may be quite different for different
menory subsystens. In section 2, the underlying architecture was supposed to
have a two-way associative cache, where the proposed solution fits naturally,
since there are no penalties for reading and witing repeatedly to the sane
location. In this section, we will examine the situation with other architectu-
res, where reading or witing continuously on the sanme |ocation may cause
performance probl ens.

The followi ng cases are worth consi dering:

3.1— Conventional cacheless architectures

This case is alnost irrelevant today, when even microprocessors have
caches. In this case, every subword access requires a nmenory operation
neverthel ess, since this is exactly what would happen if the architecture

cdata from memory PROCESSOR

AND CACHE

cdata to memory MW R=T

address to memory MWR=A

gomtwot

L

comparator

Figure 2 - Structure for avoiding repeated writes

al l owed partial access to nmenory, there is neither inprovenent nor worsening in
per f or mance.

3.2— Architectures with write-back caches

This is the case used as exanple in section 2; since wite-back caches
send their contents to main nore only upon demand, the process of repeated
writes does not pose any additional problem

3.3— Architectures with write-through caches

The proposed solution may be quite inefficient when witing strings on
machines with pure wite-through caches, since repeated witing to the same
|l ocation will generate repeated wites to the same location in main nenory,
causing the processor to stall waiting for the nmenory subsystem This may
requi re sone additional hardware, again with no inmpact on the cycle tine.

This can be solved by including an internediate register inthe wite
path fromthe cache to the mai m menory, as shown in figure 2. Every tine a word
is witten in the cache, it is also copied to MAR-D, and the nmenory address is
witten to MAR-A, but these values are not sent to the menory subsystem In
subsequent wites, the nmenory address is conpared to the address al ready present
inthe MAR-A if they are different, the values present in MAR are sent to the
menory subsysteny otherwi se, they are sinply updated.

If the machine already has a wite queue, is should be easy to
i mpl erent this mechanism the details depend on the exact architecture of the
write queue.

3.4— Decoupled access/execute

Decoupl ed access/execute architectures, originally proposed in
[Sm 84], try to anticipate nmenory accesses as nuch as possible to hide nenory
| atency, and usually uses this nmechanisminstead of a cache. If a cache is used
anyway with a decoupled access/execute architecture, the problem is already
sol ved by one of the above nechani sns; ot herw se, nechani sns shoul d be desi gned
to handle efficiently the repeated reads and wites to the sanme | ocation.

One of the key problens to be solved for a good decoupl ed access/exe-
cute architecture is the synchronizati on of reads and wites to the same nmenory
| ocation. Wien a word is witten to nmenory, it is necessary to check if a read

to the sane | ocati on has been issued and is still active. In this case, the newy
generated value nust be witten in the corresponding position of the input
queue, and the value that will cane from the nenory subsystem should be

di scarded when it arrives.

If a decoupled access/execute architecture already has the above
mechani sm the proposed solution will work correctly, even with overlapped
strings, and the reading performance will be as good as in a system wth
write-back caches.

Wites can be handled in the sane way as with wite-trough caches,
since the situation is the sane.

4 Cost considerations

The proposed instructions are a straightforward extension of
shift/merge instructions already present in nost architectures. The hardware
cost of its inplenentation should be a noderate increase in control logic. It
is certainly less expensive then the inplenentation of wunaligned nenory
ref erences, a conpetitive approach

The real cost concern is with the index bits.

This solution has been developed for the micron project, [Canb2a,
Canb2b], which is a tagged architecture. Tags are used to allow out-of-order
execution and delayed interrupts. Wien a word contains valid data, there are
avai l able bits for storing the index, and hence the cost was zero. It is also a
decoupl ed access/execute architecture. As in any real access/execute architec-
ture, many nenory operations can be outstanding, and so a |arge nunber of bits
are already required for reordering and control; adding 3 bits for the index
does not add to the conplexity of control, only to the size of the control word.

That is not the general case, however, and the suitability of this
proposal depends on sol ving the problemof the index bits storage when registers
nmust be saved or restored. Making the menory 3 bits wider for this purpose is
certainly wasteful; on the other hand, using two nmenory words in every
save/restore operation has a significant performance penalty.

Regi sters may be saved and stored in blocks, as in task sw tching, or
i ndividually under program control. Procedure calls can be done either way -

machi nes with regi ster wi ndows save regi sters in bl ocks, while machi nes without
regi ster wi ndows usual ly saves/restores registers individually.

In machi nes that save and restore in bl ocks even for procedure calls,
it is easy to add the index fields packed in one word for a block (of 16)
registers, and this is a small overhead. Gven the nunber of registers in
current machi nes, the save/restore of individual registers is a very infrequent
operation, and two words of menory can be used wi thout a significant perfornance
penalty. Mchines wth register w ndows seem to be the current trend,
exenplified by the SPARC architecture.

The situation is different for machines that predom nantly save/re-
store registers individually. In this case, this proposed schene is suitable
only when a peculiar feature (like the tag in the above exanple) offer an
econom ¢ way to save/restore the indexes.

5 Operations with unaligned subwords

If the architecture supports register pairs operating as double
preci sion operands, the operation with unaligned subwords would be a trivial
extension of the functionality of ExtractX and InsertX instructions to operate
with double word operands. The algorithnms will remain quite sinple: load the
word with the base address in the | oworder register, |oad the next word on the
hi gh-order register and apply the extended instruction

However, this is unlikely to occur in machines with words of 64 or nore
bits. Additionally, a double-word access can cause very inconvenient access
violations if the first word is in the |ast address in a page. In this case, a
more conplex sequence of instructions wll be required, but since each
instruction is independent, the general page fault mechanismw || take care of
access across page boundari es.

The instructions ExtractX (with X different of byte, of course) nust
be functionally extended to extract only the |l ower part of a subword, if a part
lies outside it word argunent, and nust be conpl enented by a Upper ExtratcX, that
will AND an argunent and the upper portion of the subword:

The meaning of the instruction ExtractX is preserved, wth the
additional condition that bit fields outside the word size should be considered
to be 0. The meaning of UpperExtractX Rb, Rs, Rd is

if (Z=8* I(Rs) + X-64) >0 then Rd
el se Rd

Ro ANDRs [Z-1: Z] << (X-2)
Rb

Anal ogously, the nmeaning of UpperlinsertX Rb, Rs, Rd is

if (Zz=8* I(Rb) + X- 64) >0
then Rd Rbo AND ((ONES ANDO [Z - 1: Z]) OR(Rs [X - 1: 2Z]))
el se Rd Rb

The foll owi ng exanpl e covers the case of noving subwords between two
arbitrary and possibly unaligned addresses. Rl and R4 contains the source and
destinati on addresses, respectively.

Copy: LOAD (R1),R2 % contains 1st source word
ADD R1, 8, R3
LOAD (R3),R3 % contains 2nd source word
Extract X R2, R8
Upper Extract X R8, R3, R8 % R8 contai ns the subword
LOAD (R4), R5 % contains 1st dest. word
ADD R4, 8, R7
LOAD (R7),R3 % contains 2nd dest. word
I nsertX R8, R5
UpperinsertX R8, R3, R3
Store (R4), RS
Store (R7), R3
Bz Copi ed
I NC R1, size(X)
I NC R4, size(X)
JUWP Copy

Copi ed:

Once operations with unaligned subwords are provided, it is sonewhat
straightforward to inplenent operations wth arbitrary bit fields, but,
dependi ng on the specific ALU design, it mght be nore costly in ternms of ALU
hardware. Cbviously, to address arbitrary subfields it is necessary to use
address expressed in bits and not in bytes, like the fornmer Burroughs B1000
series. This should not be problemw th address size of 64 bits.

The instruction Extract should be extended to receive the field size
as an operand, wth perhaps signed and unsigned variants. Unfortunately,
i nstructions should be provided for all the intended values of X for InsertX
since it already requires two argunents: the word to operate upon and the val ue
to insert, and nost architectures can only provide two explicit arguments to an
i nstruction.

6 Conclusions

The proposed inplenmentation of subword operations is quite general,
does not require any significant additional hardware for machines wth
write-back caches and register w ndows, and can be inplenented with a nopdest
addition of hardware on nmany machines with wite-trough caches or decoupl ed
access/execute architeture. The concept can be easily extended for unaligned
accesses.

It's main advantages are:

It works with any subfield - bytes, dibytes and tetrabytes - in an
uniform and consistent way. Of special importance is the ability to
use UNICODE coded texts;

It doesn't require the strigns to be aligned, but do not preclude
optimizations if the compiler know they are;

Depending on the underlying architecture, it can be implemented at a
very low hardware cost.

7 Bibliography

[Cam92a] Campos, CGeral do L. Asynchronous Pol ycyclic Architecture: an overvi ew.
I nformation Processing 92, J. van Leewen (ed), vol 1, 518-524, Madrid,
sep 1992.

[Cam92g] Campos, Ceraldo L. Asynchronous Polycyclic Architecture. Parallel
Processi ng: CONPAR 92-VAPP V (Lecture Notes in Computer Science, vol
634), Springer-Verlag, sep 1992.

[DEC92] Digital Equi pment Corporation, "Al pha architecture handbook", 1992.

[Hen90] Hennessy, J. L. and Patterson, D. A "Conmputer Architecture: A
Quantitative Approach". Mrgan, Kauf mann Publishers, California, 1990.

[Smi84] Smith, J. E.,"Decoupled Access/Execute Architecture Conputer Archi-
tectures", ACM Trans. Conputer Systens 2(4):298-308, Nov 1984.

